Как известно, диагонали точкой пересечения делятся пополам, а противоаоложные стороны пар-мма равны. Следовательно, противоположные по отношению друг к другу треугольники равны(по 3-ему признаку равенства треугольников), и площади их тоже равны.
Осталось доказать, что площади двух "смежных" треугольников равны. Рассмотрим их. Одна сторона у них общая, примем за основание сторону, лежащую на диагонали. Эти стороны у треугольников равны, т.к. точкой пересечения, повторюсь, диагонали делятся пополам. Прощадь треугольника у нас равна половине основания, умноженного на высоту, проведенную к основанию. Проведи к основаниям треугольников высоту - это будет один и тот же отрезок.
Мы получили - основания у треугольников равны, высоты равны.
Теорема доказана.
Поделитесь своими знаниями, ответьте на вопрос:
Выразить через вектор а и вектор b : bc ; ab; ca ; mf
1) Биссектриса угла Е делит его на два по 38°.
В треугольнике СКЕ углы при основании СЕ равны.
В равнобедренном треугольнике углы при основании равны.
Следовательно, треугольник СКЕ - равнобедренный.
2) В треугольнике большей является сторона, лежащая против большего угла, меньшей - лежащая против меньшего угла.
КD в треугольнике КDE лежит против меньшего угла этого треугольника. Этот угол равен 38°, остальные - 66° и 76°
Следовательно, КD - меньшая сторона.
Отсюда КЕ>DK, а так как КС=КЕ, то КС>DK.