nadjasokolova2017
?>

Дано: угол д= углу а доказать: треугольник аов подобен треугольнику сод

Геометрия

Ответы

orantus3

ответ

ответ дан

ivanproh1

S = 102 см²

Объяснение:

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим

Х = 7±√(49+240) = 17см.

Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.

Площадь ромба равна 4*25,5 = 102см².

Можно через диагонали:

S=(1/2)*D*d  = (1/2)*34*6 = 102 см².

Sukharev-Achkasov
Площадь параллелограмма равна произведению стороны и высоты, опущенной на эту сторону: S = a · h.
У параллелограмма всего 4 высоты, которые попарно равны, поэтому нужно найти всего две разные высоты, опущенные на смежные стороны.
Пусть ABCD - параллелограмм, у которого AB = CD = 2 см, BC = AD = 5 см. Из точки B опустим высоту BM на сторону AD и высоту BN на сторону CD.
Найдём высоты:
S = AD · h1; 5 = 5 · h1; h1 = 5 / 5 = 1 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна)
S = CD · h2; 5 = 2 · h2; h2 = 5 / 2 = 2,5 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна)
Найдём острый угол BAD параллелограмма. Он будет равен острому углу BCD. Поэтому достаточно найти только один угол. Рассмотрим ΔBAM. Он прямоугольный. Теперь ищем угол BAM: sin BAM = BM / AB, где BM - это высота h1 = 1 см; sin BAM = 1/2; угол BAM = arcsin(1/2) = 30 (градусов) = угол BAD параллелограмма = угол BCD.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано: угол д= углу а доказать: треугольник аов подобен треугольнику сод
Ваше имя (никнейм)*
Email*
Комментарий*