ВD - высота равнобедренного треугольника, проведенная к основанию, значит и биссектриса.
Биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
В треугольнике АВМ ВО - биссектриса, значит
АО : ОМ = ВА : ВМ
ВА = АО · ВМ / ОМ = 18 · 16 / 12 = 24 см
Доказательство свойства биссектрисы (на всякий случай)
Проведем прямую АК║BD, К - точка пересечения этой прямой с прямой ВС.
∠DBA = ∠KAB как накрест лежащие (AK ║ BD, AB секущая),
∠CBD = ∠СКА как соответственные (АК ║ BD, СК секущая),
так как ∠DBA = ∠CBD, то и ∠КАВ = ∠СКА, тогда
ΔАВК равнобедренный, АВ = ВК.
По обобщенной теореме Фалеса:
АО : ОМ = КВ : ВМ или
АО : ОМ = АВ : ВМ.
Поделитесь своими знаниями, ответьте на вопрос:
Яне понимаю ! можно с пошаговым объяснением
bh- биссектриса
тупой угол = 150, тогда острый = 30
При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16.
Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8
Площадь параллелограмма = 8*(16+5)=168 см^2
2)
площадь ромба равна 1/2*d*d1
где d и d1 это диагонали ромба
и получается следуещее
d/d1=3/4
4d=3d1
d=3d1/4
S=1/2*d*d1
24=1/2*3*d1/4*d1
24=3*d1^2/8
8=d1^2/8
d1^2=8*8
d1=8
d=3*d1/4=3*8/4=6
сторона ромба по теореме пифагора получится так
a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба
a^2=(d/2)^2+(d1/2)^2
a^2=(6/2)^2+(8/2)^2=9+16=25
a=5
P=4*a=4*5=20
3.
Периметр ромба равен 4*сторона
сторона равна периметр\4
сторона ромба равна 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла равен площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)=
=119\169
По одной из основніх формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ: 120\169,119\169,120\119.