Окружность задана уравнением (x-2)^2 + (y+3)^2=9. напишите уравнение прямой а) проходящей через ее центр и параллельной оси абсцисс; б) проходящей через ее центр и точку а(4; 1)
А)r=ab/2=12 см б) проведем высоту cl , из прямоугольного треугольника cld ld²=cd²-ab²=25²-24²=49 ld=7 если в четырехугольник вписана окружность,то сумма его противоположных сторон равна . ab+cd=bc+ad bc+ad=49 ad=bc+ld bc+bc+ld=49 2bc+7=49 bc=21 ad=49-21=28 в)проведем радиус qf ,точка f лежит на прямой cd qf является высотой т. к. касательная к окружности перпендикулярна радиусу. отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность kc=cf=bc-r=21-12=9 ed=ef=ad-r=28-12=16 qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу qf²=16*9 12²=16*9 144=144 следовательно треугольник cdq прямоугольный
lele52
28.03.2022
А)r=ab/2=12 см б) проведем высоту cl , из прямоугольного треугольника cld ld²=cd²-ab²=25²-24²=49 ld=7 если в четырехугольник вписана окружность,то сумма его противоположных сторон равна . ab+cd=bc+ad bc+ad=49 ad=bc+ld bc+bc+ld=49 2bc+7=49 bc=21 ad=49-21=28 в)проведем радиус qf ,точка f лежит на прямой cd qf является высотой т. к. касательная к окружности перпендикулярна радиусу. отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность kc=cf=bc-r=21-12=9 ed=ef=ad-r=28-12=16 qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу qf²=16*9 12²=16*9 144=144 следовательно треугольник cdq прямоугольный
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Окружность задана уравнением (x-2)^2 + (y+3)^2=9. напишите уравнение прямой а) проходящей через ее центр и параллельной оси абсцисс; б) проходящей через ее центр и точку а(4; 1)
б) проведем высоту cl , из прямоугольного треугольника cld
ld²=cd²-ab²=25²-24²=49
ld=7
если в четырехугольник вписана окружность,то сумма его противоположных сторон равна .
ab+cd=bc+ad
bc+ad=49
ad=bc+ld
bc+bc+ld=49
2bc+7=49
bc=21
ad=49-21=28
в)проведем радиус qf ,точка f лежит на прямой cd
qf является высотой т. к. касательная к окружности перпендикулярна радиусу.
отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность
kc=cf=bc-r=21-12=9
ed=ef=ad-r=28-12=16
qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу
qf²=16*9
12²=16*9
144=144
следовательно треугольник cdq прямоугольный