1. Да, могут быть подобными два прямоугольных треугольника, по признаку о двух углах. Т.К если в одном из них есть острый угол 40° то другой будет 50°. А во втором — острый угол 50° значит другой угол 40°.
2. Да,могут быть подобными . Так как если в одном из них острый угол одного треугольника вдвое больше то в другом будет вдовое меньше. Но сумма острых углов останется 90.
3.Катет является средним пропорциональным произведения гипотенузы и проекции этого катета на гипотенузу.
4.Высота, проведенная до гипотенузы, является средним пропорциональным между произведением проекций катетов на гипотенузу.
НатальяРуктешель472
23.12.2021
1. Немає даних2. СД=корінь(АД *ВД)=корінь(36*49)=42, 4. периметр1(Р1)=72, периметр2(Р2)=7+8+9=24, Р1/Р2=k=72/24=3, сторона1=3*7=21, сторона1-2=3*8=24, сторона1-3=3*9=27, 5. гіпотенуза=корінь(катет1 в квадраті+катет2 в квадраті)=корінь(36+64)=10, радіус кола=1/2гіпотенузи=10/2=5, 6. Трапеція АВСД, АВ=10ВС=9, СД=17, АД=30, проводимо висоти ВН і СК на АД, ВН=СК, НВСК-прямокутник ВС=НК=9, КД=х, АН=АД-НК-КД=30-9-х=21-х, трикутник АВН, ВН в квадраті=АВ в квадраті-АН в квадраті=100-441+42х-х в квадраті, трикутник КСД СК=СД в квадраті-КД в квадраті=289-х в квадраті, 100-441+42х-х в квадраті=289-х в квадраті, х=15=КД, АН=21-15=6, ВН=корінь(100-36)=8
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Уравнение к каноническому виду и построить её \frac{(x-2)^{2} }{16} +\frac{(x+4)^{2} }{25} =1
Объяснение:
1. Да, могут быть подобными два прямоугольных треугольника, по признаку о двух углах. Т.К если в одном из них есть острый угол 40° то другой будет 50°. А во втором — острый угол 50° значит другой угол 40°.
2. Да,могут быть подобными . Так как если в одном из них острый угол одного треугольника вдвое больше то в другом будет вдовое меньше. Но сумма острых углов останется 90.
3.Катет является средним пропорциональным произведения гипотенузы и проекции этого катета на гипотенузу.
4.Высота, проведенная до гипотенузы, является средним пропорциональным между произведением проекций катетов на гипотенузу.