пусть дана трапеция ABCD с равными боковыми сторонами AD = BC. сумма ее оснований AB + DC = 17 см, высота AH = 3,5 см
угол ADH = 45 градусам по условию, угол AHD = 90 градусов, так как AH - высота = >
угол DAH = 180 - 90 - 45 = 45 градусов => треугольник AHD - равнобедренный, DH = AH = 3,5 см.
проведем еще одну высоту BL.
угол BCL = 45 градусам по условию, угол BLC = 90 градусов, так как BL - высота =>
угол LBC = 180 - 90 - 45 = 45 градусов => треугольник BCL - равнобедренный, LC = BL = 3,5 см
AB || DC, AH || BL = > ABLH - паралеллограмм => AB = HL
пусть AB = HL = x. тогда:
AB + DC = AB + DH + HL + LC = 2x + 7 = 17
2x = 10
x = 5
AB = 5 см.
DC = DH + HL + LC = 3,5 + 5 + 3,5 = 12 см.
ответ: AB = 5 см; DC = 12 см
Прямая касается двух окружностей, точки касания удалены от центров на радиусы. Так как радиусы равны, точки касания равноудалены от центров и лежат на прямой, параллельной линии центров.
Окружности касаются внешним образом, точка касания лежит на линии центров, расстояние между центрами равно двум радиусам. Радиус, поведенный в точку касания, перпендикулярен касательной и образует прямоугольный треугольник, в котором линия центров - гипотенуза. Катет равен половине гипотенузы, значит он лежит против угла 30.
Искомый угол является накрест лежащим при параллельных и равен 30.
Поделитесь своими знаниями, ответьте на вопрос:
Cоставить уравнение оси ox как линии пересечения двух плоскостей
Ax + By + Cz +D = 0
Особые случаи уравнения (3.1):
1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.
2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.
3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.
4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.
Уравнения координатных плоскостей: x = 0, y = 0, z = 0.