Дудина895
?>

Сторона основания правильной четырехугольной призмы равна 3 см а высота 3корень6 см найдите диагональ призмы

Геометрия

Ответы

suxoruchenkovm171
Для решения данной задачи нам необходимо знать, как рассчитать диагональ призмы по известным данным.

Диагональ призмы - это расстояние между двумя вершинами, которые не лежат на одной грани. Для правильной четырехугольной призмы с высотой h и стороной основания a, диагональ можно рассчитать следующим образом:

Диагональ = √(h^2 + a^2)

Теперь пошагово разберем решение данной задачи.

Шаг 1: Запишем известные данные:
Сторона основания (a) = 3 см
Высота (h) = 3√6 см

Шаг 2: Рассчитаем квадрат высоты и основания:
h^2 = (3√6)^2 = 9 * 6 = 54
a^2 = 3^2 = 9

Шаг 3: Подставим полученные значения в формулу для рассчета диагонали:
Диагональ = √(h^2 + a^2) = √(54 + 9) = √63

Шаг 4: Упростим корень:
√63 = √(9 * 7) = √9 * √7 = 3√7

Ответ: Диагональ призмы равна 3√7 см.

Обоснование: Мы рассчитали значение диагонали, используя известные данные о стороне основания и высоте призмы. Применив формулу для рассчета диагонали и выполнив соответствующие математические операции, мы получили ответ в виде корня из числа 7.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сторона основания правильной четырехугольной призмы равна 3 см а высота 3корень6 см найдите диагональ призмы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fotomuha1
zyf0066
fashbymsk
tinadarsi
Анна Марина1873
Сопова
lobanosky162
dmitrij-sp7
Apresov
Vladimirovich58
nadyatsoi
Михеев557
ivan-levermor
kuharhuks
nekarpova