Отрезок AM = m (медиана) дает 4 прямоугольных треугольника.
Так как M - середина BC, то BM = CM = d.
По теореме Пифагора для этих треугольников:
{ m^2 = (5-b)^2 + 2^2 = 25 - 10b + b^2 + 4
{ d^2 = 2^2 + b^2 = 4 + b^2
{ m^2 = (4-c)^2 + x^2 = 16 - 8c + c^2 + x^2
{ d^2 = x^2 + c^2
Подставляем 2 уравнение в 1 уравнение, а 4 уравнение в 3 уравнение:
{ m^2 = 25 - 10b + d^2
{ m^2 = 16 - 8c + d^2
Приравниваем правые части:
25 - 10b + d^2 = 16 - 8c + d^2
Приводим подобные:
10b - 8c = 9
b = (8c + 9)/10
Так как мы не знаем угол А, то и не можем вычислить b и с.
Можем только найти их соотношение друг к другу.
Например, при c = 1 будет b = (8 + 9)/10 = 1,7
Тогда приравняем правые части во 2 и 4 уравнениях:
4 + b^2 = x^2 + c^2
И подставим найденные значения:
4 + 1,7^2 = x^2 + 1^2
x^2 = 4 + 2,89 - 1 = 5,89
x = √5,89 ≈ 2,427
Belokonev286
22.11.2021
Высота равнобедренного треугольника проведенная из его вершины найдем из прямоугольного треугольника с катетом = 5 (половина основания) и гипотенузой = 13 (боковая сторона), получаем h^2 = 169 - 25 =144, h=12. Высоту равнобедренного треугольника проведенная к боковой стороне найдем из двух прямоугольных треугольников на которые она его делит. В первом треугольнике гипотенуза равна 13(боковая сторона), а катет обозначим х, во втором треугольнике гипотенуза равна 10 (основание) и катет равен (13-х). По теореме Пифагора h^2=169-x^2 = 100 - (13-х)^2. 26x=238, x=9 целых 2/13. h^2=169-(9 целых 2/13)^2, h=120/13=9 3/13.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано abcd трапеция ab=cd угл a = 60 bc 16 ak биссектриса bc=kc ml средняя линия найти ml
√5,89
Объяснение:
Вот рисунок.
Отрезок AM = m (медиана) дает 4 прямоугольных треугольника.
Так как M - середина BC, то BM = CM = d.
По теореме Пифагора для этих треугольников:
{ m^2 = (5-b)^2 + 2^2 = 25 - 10b + b^2 + 4
{ d^2 = 2^2 + b^2 = 4 + b^2
{ m^2 = (4-c)^2 + x^2 = 16 - 8c + c^2 + x^2
{ d^2 = x^2 + c^2
Подставляем 2 уравнение в 1 уравнение, а 4 уравнение в 3 уравнение:
{ m^2 = 25 - 10b + d^2
{ m^2 = 16 - 8c + d^2
Приравниваем правые части:
25 - 10b + d^2 = 16 - 8c + d^2
Приводим подобные:
10b - 8c = 9
b = (8c + 9)/10
Так как мы не знаем угол А, то и не можем вычислить b и с.
Можем только найти их соотношение друг к другу.
Например, при c = 1 будет b = (8 + 9)/10 = 1,7
Тогда приравняем правые части во 2 и 4 уравнениях:
4 + b^2 = x^2 + c^2
И подставим найденные значения:
4 + 1,7^2 = x^2 + 1^2
x^2 = 4 + 2,89 - 1 = 5,89
x = √5,89 ≈ 2,427