Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
n-896458
10.10.2021
Точка О -центр окружности. Концы радиусов обозначим А и В. Соединим концы радиусов, получим хорду АВ. Рассмотрим полученный треугольник АОВ. Он равнобедренный, т.к АО=ВО = 8 см.. Из вершины О проведём высоту ОН к хорде. Получили 2 тр-ка. Рассмотрим тр-ник ВОН. Угол НОВ = 120:2 = 60 гр., т.к. высота равнобедренного тр-ника делит этот угол пополам. Угол ВОН = 90гр. Угол В = 180 -60 -90 =30 гр. Высота ОН лежит против угла 30 гр и равна половине гипотенузы ОН. ВО= 8/2 = 4 см. ответ: 4 см - расстояние от центра окружности до хорды.
рассмотрим получившиеся треугольники АВО и АСО, в них:
угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента:
- катет ОВ = катет ОС (радиусы окружности)
- ОА - общ. гипотенуза
из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ
ч. т. д.