Рисунок во вложении, хотя можно вполне обойтись без него.
1) Найдем вторую сторону основания параллелепипеда из формулы площади основания. Т.к. он прямоугольный, основание - прямоугольник. S=a*8=40 а=S:8=40:8=5 см 2) Найдем высоту параллелепипеда из формулы объема. V=S·h h=V:S h=240:40=6cм Площадь боковой поверхности равна произведению высоты на периметр основания: Sбок=h·2(a+b) Sбок=6·2·(8+5)=156 см² Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и боковой поверхности: Sполн= 2·Sосн +Sбок Sполн=80+156=236 см² Диагональ можно найти с теоремы Пифагора ( см. рисунок) Для этого нужно сначала вычислить диагональ основания АС. Диагональ АС1 параллелепипеда равна АС1=√(АС²+С1С²) Можно воспользоваться теоремой: Квадрат диагонали параллепипеда равен сумме квадратов трех его линейных измерений. АС1²=АВ²+ВС²+С1С²=8²+5²+6²=125 АС1=√125=5√5 см ----------------------------------------- №2
Объем прямоугольного параллелепипеда равен произведению высоты на площадь его основания или произведению трех его измерений. Что одно и то же. V=a·b·c Об основании известно, что его периметр Р равен 40 см. Р=2(а+b) Ни а, ни b не известны, но их длину можно найти. Пусть ширина основания а, тогда его длина ( по условию) а+4 40=2·(а+а+4)=2а+2а+8=4а+8 4а=40-8=32 см а=8 см b=8+4=12 см Высоту найдем из площади боковой поверхности, которая равна произведению высоты на периметр основания: Sбок=hP h=Sбок:Р h=400:40=10 см V=a·b·c=8·12·10=960 см³
Novikova
24.01.2020
У равнобедренного Δ две стороны равны. 234 - 104 = 130 - это сумма двух равных сторон 130 : 2 = 65 - это одна из равных сторон. Из вершины Δ, противолежащей основанию, опустим высоту на основание Получим 2 равных прямоугольных треугольника. Рассмотрим один из них. Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам 104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ. Гипотенуза = боковой стороне = 65 По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.) ответ: 2028 кв.ед - площадь равнобедренного Δ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном тр-ке основание относися к боковой стороне как 3к4. найдите стороны этого треугольника если его периметр равен 33 см
Рисунок во вложении, хотя можно вполне обойтись без него.
1) Найдем вторую сторону основания параллелепипеда из формулы площади основания. Т.к. он прямоугольный, основание - прямоугольник.
S=a*8=40
а=S:8=40:8=5 см
2) Найдем высоту параллелепипеда из формулы объема.
V=S·h
h=V:S
h=240:40=6cм
Площадь боковой поверхности равна произведению высоты на периметр основания:
Sбок=h·2(a+b)
Sбок=6·2·(8+5)=156 см²
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и боковой поверхности:
Sполн= 2·Sосн +Sбок
Sполн=80+156=236 см²
Диагональ можно найти с теоремы Пифагора ( см. рисунок)
Для этого нужно сначала вычислить диагональ основания АС.
Диагональ АС1 параллелепипеда равна
АС1=√(АС²+С1С²)
Можно воспользоваться теоремой:
Квадрат диагонали параллепипеда равен сумме квадратов трех его линейных измерений.
АС1²=АВ²+ВС²+С1С²=8²+5²+6²=125
АС1=√125=5√5 см
-----------------------------------------
№2
Объем прямоугольного параллелепипеда равен произведению высоты на площадь его основания или произведению трех его измерений. Что одно и то же.
V=a·b·c
Об основании известно, что его периметр Р равен 40 см.
Р=2(а+b)
Ни а, ни b не известны, но их длину можно найти.
Пусть ширина основания а, тогда его длина ( по условию) а+4
40=2·(а+а+4)=2а+2а+8=4а+8
4а=40-8=32 см
а=8 см
b=8+4=12 см
Высоту найдем из площади боковой поверхности, которая равна произведению высоты на периметр основания:
Sбок=hP
h=Sбок:Р
h=400:40=10 см
V=a·b·c=8·12·10=960 см³