Найдите градусную меру дуги abc изображенной на рисунке, если центр окружности abc- точка d, а от центра окружности adc лежит на меньшей дуги ас (точка e)
Пусть угол ACD равен x. По условию сказано, что угол ABC равен углу ACD, значит угол ABC равен x. Так как CD биссектриса, значит угол DCB равен углу ACD и равен x. По теореме об углах треугольника, угол BDC в треугольнике CDB равен 180 - x - x = 180 - 2x. По теореме о смежных углах, угол ADC равен 180 - (180 - 2x) = 180 - 180 + 2x = 2x. Так как треугольник ABC равнобедренный, угол BAC равен углу ACB (угол ACB = угол ACD + угол DCB = 2x). Получается, что угол BAC равен 2x. Так как угол BAC равен 2x, и угол ADC равен 2x, понятно что треугольник ADC равнобедренный (углы при основе равны). Следовательно AC = CD = 10 см. ответ: биссектриса CD равна 10 см.
Lenamihluk50
24.05.2021
А мы пойдём другим
А) Рассмотрим рисунок 2 :
Пусть угол ВСО = а
Обозначим точку K, как точку пересечения прямой СО с окружностью, описанной около ∆ АВС, точка О – центр вписанной окружности ∆ АВС, тогда →
KB = KO = KA = 5 см - радиусы описанной окружности около треугольника АВО – по теореме о трилистнике или лемме о трезубце, или лемме Мансиона.
Угол АСВ является вписанным углом окружности с центром в точке Е ▪Вписанный угол равен половине дуги, на которую этот угол опирается ▪ Угол АСВ = ( 1/2 ) • U AKB
U BK = U KA - равные хорды ВА и КА стягивают равные дуги
Угол АСВ = ( 1/2 ) • U AKB = U KA = U BK
Угол АКЕ является центральным углом окружности с центром в точке Е ▪ Центральный угол равен дуге, на которую этот угол опирается ▪ Угол АКЕ = U KA
Значит, угол АСВ = угол АКЕ = arccos( 3/4 )
Также если сделать замену: r - радиус описанной окружности около треугольника АОВ R - радиус описанной окружности около треугольника АВС , тогда
угол АСВ = arccos( ( 2R^2 - r^2 )/ 2R^2 )
ОТВЕТ: угол С = arccos( 3/4 )
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите градусную меру дуги abc изображенной на рисунке, если центр окружности abc- точка d, а от центра окружности adc лежит на меньшей дуги ас (точка e)
Пусть угол ACD равен x. По условию сказано, что угол ABC равен углу ACD, значит угол ABC равен x. Так как CD биссектриса, значит угол DCB равен углу ACD и равен x. По теореме об углах треугольника, угол BDC в треугольнике CDB равен 180 - x - x = 180 - 2x. По теореме о смежных углах, угол ADC равен 180 - (180 - 2x) = 180 - 180 + 2x = 2x. Так как треугольник ABC равнобедренный, угол BAC равен углу ACB (угол ACB = угол ACD + угол DCB = 2x). Получается, что угол BAC равен 2x. Так как угол BAC равен 2x, и угол ADC равен 2x, понятно что треугольник ADC равнобедренный (углы при основе равны). Следовательно AC = CD = 10 см. ответ: биссектриса CD равна 10 см.