Неужели так туго? Дано: треуг. АВС АВ=ВС=АС. т. А,В,С принадлежат окружности с центром О. Найти АВ Решение. Центр описанной окружности треугольника лежит на пересечении серединных перпендикуляров. В правильном треуг. серед. перп. совпадают с высотами и медианами. В точке пересечения медианы делятся в отношении 1:2. Поэтому радиус равен 2/3 от медианы m. (2/3)*m = 3,5 Отношение m/AB=sin 60° Решая это уравнение относительно АВ и учитывая, что sin 60°=√3/2, получим АB=3,5√3 Другое решение этой задачи в одно действие показано на рисунке.
pri02
20.02.2022
1) Найдите площадь полной поверхности призмы.
площадь основания S1 =AB*AB*sin(pi/3)*1/2 = корень(3) боковая площадь S2 =AB*AA1*3 = 2*1*3=6 площадь полной поверхности призмы S3 = 2*S1+S2 = 2*корень(3) + 6
2) Найдите площадь сечения призмы плоскостью ACB1. площадь основания S1 = AB*AB*sin(pi/3)*1/2 = корень(3) высота треугольника основания h =AB*sin(pi/3)=корень(3) высота треугольника сечения h1 = корень(h^2+AA1^2)=2 площадь сечения призмы плоскостью ACB1 S4 = S1*h1/h = корень(3) * 2/корень(3) = 2
3) Найдите угол, который составляет прямая AB1 с плоскостью ABC. тангенс угла = BB1/AB=1/2 угол = арктангенс(0,5)
4) Найдите угол между плоскостями AB1C и ABC. высота треугольника основания h =AB*sin(pi/3)=корень(3) тангенс угла = BB1/h=1/корень(3) угол = арктангенс(1/корень(3)) = pi/6 = 30 градусов
5) Найдите длину вектора AA1-AC+2B1B-C1C AA1-AC+2B1B-C1C=CА+B1B+СC1=CА+A1A+AA1=CA ответ - 2 см
6) Докажите, что прямая A1C1 параллельна плоскости ACB1. прямая A1C1 параллельна прямой АС, лежащей вплоскости ACB1, значит параллельна плоскости ACB1
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике kpn высота pm делит основание kn так, что km: mn= 8 : 3 определи соотношение площадей skpn/spmn
Дано: треуг. АВС АВ=ВС=АС. т. А,В,С принадлежат окружности с центром О.
Найти АВ
Решение.
Центр описанной окружности треугольника лежит на пересечении серединных перпендикуляров. В правильном треуг. серед. перп. совпадают с высотами и медианами.
В точке пересечения медианы делятся в отношении 1:2. Поэтому радиус равен 2/3 от медианы m.
(2/3)*m = 3,5
Отношение m/AB=sin 60°
Решая это уравнение относительно АВ и учитывая, что sin 60°=√3/2,
получим
АB=3,5√3
Другое решение этой задачи в одно действие показано на рисунке.