Та как диагональ перпендикулярна боковой стороне параллелограмма она будет являться высотой данного параллелограмма Площадь параллелограмма S=a*h (где a – сторона h – высота) Выразим из формулы высоту: h=S/a h=12/4=3 Рассмотрим треугольник образованный боковой стороной параллелограмма, диагональю и основанием. Данный треугольник прямоугольный с гипотенузой равной основанию параллелограмма. По теореме Пифагора гипотенуза равна с= √(a^2+h^2) (где a и h – катеты) с= √(4^2+3^2)= √(16+9)= √25= 5 ответ: основание данного параллелограмма равна 5
borisrogovpr3407
23.02.2020
Пусть ABCD – трапеция, CD = 2 см, АВ = 3 см, BD = 3 см и АС = 4 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ'. Рассмотрим треугольник АСВ1. Так как ВВ'CD – параллелограмм, то В'С = 3 см, АВ' = АВ + ВВ' = АВ + CD = 5 см. Теперь известны все три стороны треугольника АВ'С. Так как АС²+ В'С²= АВ'²= 16+9=25, то треугольник АВ'С – прямоугольный, причем АСВ' = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ', составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC * BD * sin 90° = 1/2 * 4 * 3 * 1 = 6 см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти модуль вектора а (3; 4) и вектор в (-4; -5) . найти модуль вектора а и в .
Площадь параллелограмма S=a*h (где a – сторона h – высота)
Выразим из формулы высоту:
h=S/a
h=12/4=3
Рассмотрим треугольник образованный боковой стороной параллелограмма, диагональю и основанием. Данный треугольник прямоугольный с гипотенузой равной основанию параллелограмма.
По теореме Пифагора гипотенуза равна с= √(a^2+h^2) (где a и h – катеты)
с= √(4^2+3^2)= √(16+9)= √25= 5
ответ: основание данного параллелограмма равна 5