прямые называются перпендикулярными если они пересекатся и получаются угол в 90 градусов
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Стяжкин
22.02.2023
Решение: 1. Площадь квадрата: S=a² S=7²=49(см²) 2. Площадь прямоугольника: S=a*b S=3*14=42 (дм²) 3. S=a² 8=a² a=√8=√(4*2)=2√2) (см) 4. Обозначим одну сторону прямоугольника за (х), тогда вторая сторона равна: 5*х=5х S=a*b 12500=x*5x 5x²=12500 x²=12500:5 х²=2500 х=√2500=50(м)- ширина прямоугольника 5*х=5*50=250(м) -длина прямоугольника Р=2*(a+b) Р=2*(50+250)=2*300=600(м) 5. Площадь прямоугольника равна S=a*b S=3,4*4,8=16,32 (м²) Площадь кафельной плитки: S=a² а=20см=0,2м S=0,2²=0,04 (м²) Количество кафельных плиток для, необходимых для облицовки: 16,32 : 0,04=408 (плиток)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Образующая конуса равна 7см.в осевом сечении угол между образующими равен 120. найдите радиус основания на высоту.
прямые называются перпендикулярными если они пересекатся и получаются угол в 90 градусов
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.