Расстояние от точки М (на биссектрисе) до стороны угла измеряется длиной перпендикуляра, опущенного из этой точки на сторону угла.
∠МАО=∠МВО=90°
∠АОМ=∠ВОМ, так как ОМ- биссектриса.
Соответственно
∠АМО=90°-∠АОМ
∠ВМО=90°-∠ВОМ- как острые углы прямоугольного треугольника
Можем утверждать, что ∠АМО=∠ВМО,
По второму признаку равенства треугольников: сторона и два прилежащие к не угла( ОМ- общая, ∠АМО=∠ВМО и ∠АОМ=∠ВОМ)
ΔАОМ=ΔВОМ. В равных треугольниках против соответственно равных углов лежат равные стороны, отсюда МА=МВ, что и требовалось доказать
Поделитесь своими знаниями, ответьте на вопрос:
Изобразите какой нибудь прямоугольный треугольник катет которого является отрезок ac а вершина b находится в одном из узлов сетки рисунок 13.5
ответ: решить
объяснение: а я тебе