Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
hr2251
17.08.2020
Нарисуй ромб и проведи в нем диагонали. они разобьют ромб на 4 равных прямоугольных треугольника. рассмотрим один из них. пусть меньший угол в треугольнике равен х, тогда второй угол будет х+40*. так как диагонали ромба являются биссектрисами его углов, то получим в ромбе углв равные: 2х, 2(х+40), 2х, 2(х+40). по теореме о сумме углов четырехугольника составим уравнение: 2х+2х+2(х+40)+2(х+40)=360 2х+2х+2х+80+2х+80=360 8х+160=360 8х=200 х=25* значит, меньший угол ромба будет 2*25=50 градусов найдем второй угол: 2(25+40)=130* больший угол ромба. ответ: углы ромба- два угла по 50*, два угла по 130*
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.