leeteukism
?>

1. в окружности с центром о проведена хорда км. найдите неизвестные углы треугольника окм, если угол kom = 52°. 2. точка м - середина хорды вс. она соединена с центром о окружности. найдите углы треугольника вом, если угол всо 71°. 3*. в окружности с центром о проведены радиусы ом, ок и on. докажите, что mok = nok, если известно, угол mok = угол nok

Геометрия

Ответы

katya860531
1) Если в треугольнике АВС даны не векторы, а координаты его вершин А(10;-2;8) В(8;0;7) С (10;2;8), то находим длины сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²)= √9 = 3,
BC = √((Хc-Хв)²+(Ус-Ув)²+(Zс-Zв)²) =√9 = 3,
AC = √((Хc-Хa)²+(Ус-Уa)²+(Zс-Zа)²) = √16 = 4.
Периметр равен 3+3+4 = 10.

2. Векторы: a(2;-4;5) b(4;-3;5).
Находим модули векторов:
|a| = √(4+16+25) = √45 = 3√5,
|b| √(16+9+25) = √50 = 5√2.
cos(a∧b) = (2*4+(-4)*(-3)+5*5)/(√45*√50) = (8+12+25)/√2250 =
              = 45/(15√10) = 3/√10 ≈  0,948683.     
 
 3. Если даны координаты точек: А(2;4;5) В(-3;2;2) С(-1;0;3),
то вектор СА = (2+1=3; 4-0=4; 5-3=2) = (3; 4; 2),
    вектор ВС = (-1+3=2; 0-2=-2; 3-2=1) = (2; -2; 1).

Скалярное произведение а*c=ВС*СА
a · c = ax · cx + ay · cy + az · cz  = 6  - 8 + 2 = 0.
Если скалярное произведение векторов равно нулю, то они перпендикулярны.
     
Dmitrievich-Telishev
Пусть задан треугольник со сторонами a, b и с. При этом сумма длин двух любых сторон треугольника должна быть больше длины третьей стороны, то есть a+b>c, b+c>a и a+c>b. И необходимо найти градусную меру всех углов этого треугольника. Пусть угол между сторонами a и b обозначен как α, угол между b и c как β, а угол между c и a как γ. 

Теорема косинусов звучит так: квадрат длины стороны треугольника равен сумме квадратов двух других длин его сторон минус удвоенное произведение этих длин сторон на косинус угла между ними. То есть составьте три равенства: a²=b²+c²−2×b×c×cos(β); b²=a²+c²−2×a×c×cos(γ); c²=a²+b²−2×a×b×cos(α). 

Из полученных равенств выразите косинусы углов: cos(β)=(b²+c²−a²)÷(2×b×c); cos(γ)=(a²+c²−b²)÷(2×a×c); cos(α)=(a²+b²−c²)÷(2×a×b). Теперь, когда известны косинусы углов треугольника, чтобы найти сами углы воспользуйтесь таблицами Брадиса или возьмите из этих выражений арккосинусы: β=arccos(cos(β)); γ=arccos(cos(γ)); α=arccos(cos(α)). 

Например, пусть a=3, b=7, c=6. Тогда cos(α)=(3²+7²−6²)÷(2×3×7)=11/21 и α≈58,4°; cos(β)=(7²+6²−3²)÷(2×7×6)=19/21 и β≈25,2°; cos(γ)=(3²+6²−7²)÷(2×3×6)=-1/9 и γ≈96,4°. 

Эту же задачу можно решить другим через площадь треугольника. Сначала найдите полупериметр треугольника по формуле p=(a+b+c)÷2. Затем посчитайте площадь треугольника по формуле Герона S=√(p×(p−a)×(p−b)×(p−c)), то есть площадь треугольника равна квадратному корню из произведения полупериметра треугольника и разностей полупериметра и каждой из сторон треугольника. 

С другой стороны, площадь треугольника равна половине произведения длин двух сторон на синус угла между ними. Получается S=0,5×a×b×sin(α)=0,5×b×c×sin(β)=0,5×a×c×sin(γ). Теперь из этой формулы выразите синусы углов и подставьте полученное в 5 шаге значение площади треугольника: sin(α)=2×S÷(a×b); sin(β)=2×S÷(b×c); sin(γ)=2×S÷(a×c). Таким образом, зная синусы углов, чтобы найти градусную меру, используйте таблицы Брадиса или посчитайте арксинусы этих выражений: β=arccsin(sin(β)); γ=arcsin(sin(γ)); α=arcsin(sin(α)). 

Например, пусть дан такой же треугольник со сторонами a=3, b=7, c=6. Полупериметр равен p=(3+7+6)÷2=8, площадь S=√(8×(8−3)×(8−7)×(8−6))=4√5. Тогда sin(α)=2×4√5÷(3×7)=8√5/21 и α≈58,4°; sin(β)=2×4√5÷(7×6)=4√5/21 и β≈25,2°; sin(γ)=2×4√5÷(3×6)=4√5/9 и γ≈96,4°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. в окружности с центром о проведена хорда км. найдите неизвестные углы треугольника окм, если угол kom = 52°. 2. точка м - середина хорды вс. она соединена с центром о окружности. найдите углы треугольника вом, если угол всо 71°. 3*. в окружности с центром о проведены радиусы ом, ок и on. докажите, что mok = nok, если известно, угол mok = угол nok
Ваше имя (никнейм)*
Email*
Комментарий*