palosik7621
?>

1. найдите третий угол треугольника, если один из них больше второго на 10° и меньше третьего на 20°. 2. постройте треугольник, вписанный в окружности. 3. постройте медиану , биссектрису, высоту в треугольнике.

Геометрия

Ответы

lepekhov4011

Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1

mirsanm26249

72°; 54°; 54°.

Объяснение:

Дано:

Равнобедренный треугольник МРК.

АВ ║МР, точка А ∈ МК, точка В ∈ КР.  

∠К = 72°, ∠ М = 54°

Найти: углы треугольника АВК.

Решение.

1. Так как Δ МРК является равнобедренным, то его углы при основании равны:

∠Р = ∠М = 54°.

2. Так как АВ ║ МР, то Δ ABK подобен Δ МРК, в силу чего:

∠АКВ треугольника АВК равен ∠К треугольника МРК:

∠АКВ = ∠К = 72°;

∠КАВ треугольника АВК равен ∠М треугольника МРК:

∠КАВ = ∠М = 54°;

∠КВА треугольника АВК равен ∠Р треугольника МРК:

∠КВА = ∠Р = 54°.

ответ: углы треугольника АВК равны 72° (угол при вершине), 54° и 54° (углы при основании).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. найдите третий угол треугольника, если один из них больше второго на 10° и меньше третьего на 20°. 2. постройте треугольник, вписанный в окружности. 3. постройте медиану , биссектрису, высоту в треугольнике.
Ваше имя (никнейм)*
Email*
Комментарий*