Buninilya
?>

Основания призмы лежат в плоскостях 2x−y+2z+9=0 и 4x−2y+4z−21=0. найти высоту призмы.

Геометрия

Ответы

Olesya

Высота призмы равна расстоянию между параллельными плоскостями

2x−y+2z+9=0 и 4x−2y+4z−21=0.

Приведём уравнение второй плоскости к коэффициентам первой

2x - y + 2z - 10.5 = 0.

Так как коэффициенты при переменных в уравнениях равны, то плоскости параллельны и для вычисления расстояния между плоскостями используем формулу:

d =   |D2 - D1| / √(A² + B² + C²).  

Подставим в формулу данные:

d =   |(-10.5) - 9| √(2² + (-1)² + 2²)  =   |-19.5| √(4 + 1 +4 )  =

   =   19.5 √9  = 6.5.

manager6

1) Концы отрезка, который не пересекает плоскость, отдалены от нее на 3 см и 8 см. Проекция отрезка на плоскость равна 12 см. Найти длину отрезка. 

-----

Обозначим отрезок АВ. Расстоянием от точки до плоскости является длина отрезка, проведенного к ней перпендикулярно. 

АА1 и ВВ1 перпендикулярны плоскости, следовательно, перпендикулярны В1А1. 

АА1║ВВ1, 

АВВ1А1 - прямоугольная трапеция. 

ВВ1=3 см.АА1=8 см,

ВС║В1А1 ⇒ А1С=ВВ1=3 см, АС=8-3=5 см. 

ВС=В1А1=12 см. 

Катеты прямоугольного ∆ АВС относятся как 5:12 - треугольник из Пифагоровых троек, ⇒гипотенуза АВ=13 см. 

                    * * *

2) Из точки, которая находится на расстоянии 6 см от плоскости, проведены две наклонные. Найти расстояние между основаниями наклонных, если угол между каждой наклонной и ее проекцией равен 30°, а угол между проекциями наклонных 120°. 

-------

Наклонные АВ и АС,  расстояние до плоскости АН=6 см,  ∠АВН=∠АСН=30°

ВН=СН=АН:tg30°=6√3

∆АНС равнобедренный, угол ВНС=120° ( дано). 

Проведем высоту НМ к основанию ВС. Высота в равнобедренном треугольнике - биссектриса и медиана. ⇒ ∆ ВНМ=∆ СНМ, ∠ВНМ=СНМ=60°

ВМ=ВН•sin60°=6√3•√3/2=9 

BC=2•BМ=18 см (по т.косинусов ВС также равно 18 см)

                     * * * 

3) Из вершины А прямоугольника АВСD со сторонами 7 см и 14 см к его плоскости проведен перпендикуляр АМ=7 см. Найти расстояние от точки М до прямых DС и DB.

--------

Примем АВ=14 см, АD=7 см. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки до прямой. По т. о 3-х перпендикулярах МD пп DC, МВ пп ВС.

В прямоугольном ∆ MAD катеты равны, следовательно, он равнобедренный с острыми углами, равными 45°. 

MD=AD:sin45°=7√2.

Из прямоугольного ∆ МАВ расстояние МВ=√(AB²+AM²)=√(196+49)=7√5 см

Расстояние от М до BD отрезок МН, перпендикулярный диагонали ABCD.

По т. о 3-х перпендикулярах МН⊥DB,⇒ его проекция АН⊥DB.

АН=AD•AB:BD

∆ ADB=∆ MAB по двум катетам,⇒ DB=MB=7√5

AH=7•14:7√5=14/√5

MH=√(AM²+AH²)=√(441/5)=21/√5=4,2√5 или ≈ 9,39 см



3-й варіант 1. кінці відрізка, який не перетинає площину, віддалені від неї на 3 см і 8 см. проекція
optikaleks7

Объяснение:

Скажу откровенно: Я 9-классник и подобных задач не решал. Я долгое время изучал твою контрольную (или тест, но это не имеет значения) и я не уверен только с 1 заданием. В скобках буду указывать точно ли я так думаю или нет, но вариант ответа "не знаю" мы использовать точно не будем. Начнём:

1. Если сумма 2 углов равна 180°, то они смежные, ответ-да (неточно, но утверждать, что углы смежные можно)

углы и вправду вертикальные и они равны, ответ-да (точно)

сумма углов треугольника в задаче равна 180°, ответ-да (точно)

по 1 признаку равенства треугольников ответ-да (неточно, т.к. признак действует, когда угол находится между этими равными сторонами)

другой угол при основании равен 70°, и остаётся 3 угол, равный 40°, ответ-да (точно)

мы уже знаем, что BD=4 см. AC=6 см. , а по свойству р/б треугольников высота, проведённая к основанию является и медианой и биссектрисой, значит DC=половине от AC=3 см. Уже видно, что ответ ученика неверный. ответ-нет (точно)

ответ-да (точно, так как соответственные углы равны и по свойству смежных углов угол 1=67°)

2. Так как сумма "левых" углов равна 180°, то и "правых" также 180°. От этого ВС и AD являются параллельными (точно)

3. Так как КС= радиусу, а ОС и ОК-радиусы, то треугольник OKC-равносторонний, а значит (если KD- диаметр), то КОС и DOC- смежные углы, в результе чего угол DOC=120°. ответ-б (точно)

4. На сторону со значением 5,2 мы вообще не смотрим. Угол CDE=90° по условию задачи. Сумма других углов=90°, теперь посмотрим: 6см.- это большая сторона, которой всегда является гипотенуза, а 3см.-один из её катетов. Катет равен половине гипотенузы, значит угол лежащий, против этого катета=30°. последний угол равен 60°, как я уже говорил сумма этих катетов=90°. ответ- С=30°, E=60° С=90° (точно)

В следующий раз постарайся присылать по одному вопросу, так больше шансов, что тебе ответят. Удачи, надеюсь всё понятно и я не опоздал.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Основания призмы лежат в плоскостях 2x−y+2z+9=0 и 4x−2y+4z−21=0. найти высоту призмы.
Ваше имя (никнейм)*
Email*
Комментарий*