Olga-Borisovna
?>

а(-2, 2)в(-8, -5)с(4, 0) построить треугольник, вершина которого находится в точках a(x1, y1), b(x2, y2), c (x3, x3) найти: 1. сторон треугольника авс2.координаты точки м перчесечения медианы3. длину и высоты, опущенной из вершины а4.площадь треугольника ​

Геометрия

Ответы

krasnobaevdj3
В равнобедренном треугольнике ABC к основанию AC проведена биссектриса BK. Периметр треугольника ABK равен 12 см, а периметр треугольника ABC равен 20 см.

Пусть стороны АВС равны а,в и с.
Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h.
Составим систему уравнений на основе данных задания.
Р(АВК) = с + h +(b/2) = 12.
P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10. 
Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.

ответ: длина биссектрисы BK равна 2 см.
valerii-borisovich550
Т.к. биссектриса является высотой, треугольник ABC - равнобедренный, с основанием AC. Значит, AB=BC, а BK также является медианой, т.е. AK=CK.
Периметр ABK P=AB+BK+AK;
Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см

Задача 2
Т.к. AB=BC, AF=EC=AB/2=BC/2;
Рассмотрим треугольники AFC и CEA
Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)
Тогда углы EAC=FCA.
Значит, угол BAE=BAC-EAC=BCF
Углы FMA=EMC, как вертикальые
Тогда углы AFM=180-FMA-FAM=MEC
Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)
Тогда AM=MC => треугольник AMC - равнобедренный

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

а(-2, 2)в(-8, -5)с(4, 0) построить треугольник, вершина которого находится в точках a(x1, y1), b(x2, y2), c (x3, x3) найти: 1. сторон треугольника авс2.координаты точки м перчесечения медианы3. длину и высоты, опущенной из вершины а4.площадь треугольника ​
Ваше имя (никнейм)*
Email*
Комментарий*