Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
Полученные точки A', B' и C' соединяем отрезками.
Получили треугольник A'B'C' гомотетичный данному.
emaykova785
28.04.2022
Имеем треугольник АВС со сторонами АВ:ВС=15:41; и высотой ВД; Проекции сторон на основание АС равно АД=12; СД=40; Обозначим коэффициенты подобия сторон AB за Х, она будет равна 15 Х, а проекцию стороны СД за У и она будет равна 41У; Тогда справедливо равенство:15Х+41У=56;Так как их сумма равна 56 по УСЛОВИЮ ЗАДАЧИ; Приняв коэффициенты подобия за 1 в обоих случаях имеем15+41=56; Проверим данный ответ через длину их общей высоты АД, она должна иметь одно и то же значение: АД^2=41^2-40^2=81; 15^2-12^2=81; 81=81; Решение верно! ответ:АВ=15; ВС=41;
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Стороны равнобедренного треугольника авс продлены на отрезки аа1 вв1 сс1. доказать что треугольник а1 в1 с1 равносоронний. как это решать. 12
Построение в объяснении.
Объяснение:
Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
Полученные точки A', B' и C' соединяем отрезками.
Получили треугольник A'B'C' гомотетичный данному.