Попытаюсь решить на уровне 9 класса.
Кротчайшее расстояние от точки С до прямой AB будет лежать на высоте треугольника ABC - CH. Для точки D, соответственно кратчайшим расстоянием до AB будет расстояние DH. Найдём катет прямоугольного треугольника CB обозначив его за x: x^2 + x^2 = 16^2. x = 8\sqrt{2}8
2
. Далее в прямоугольном треугольнике СHB найдём СH: \sqrt{(8\sqrt{2})^{2} - 8^{2} } = 8
(8
2
)
2
−8
2
=8 . Далее найдём в прямоугольном (по условию) треугольнике CDH расстояние DH: \sqrt{6^{2} + 8^{2} } = 10
6
2
+8
2
=10
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь равностороннего треугольника со стороной 12см. 2.одна из диагоналей параллелограмма является его высотой и равна 9см. найти стороны параллелограмма, если его площадь 108 кв.см. 3.найти площадь трапеции авсд с основаниями ад=30см и вс=14см., если ав=12см и ∟в=150⁰