Высота из прямого угла разбивает треугольник на подобные.
ABC~ACH (прямоугольные с общим углом)
AB/AC =AC/AH
AH =√(AC^2 -CH^2) =√(36-20) =4 (см)
AB =AC^2/AH =36/4 =9 (см)
hadzievamareta44
10.06.2022
Из т. A опустим перпендикуляр на прямую DE (см. прикрепленный рисунок). Пусть AH - этот перпендикуляр, (длину которого и требуется найти в задаче). Тогда AH⊥DE. Проведем отрезок CH в плоскости CDE. Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH. Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора: DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12², DE = √(4*12²) = 2*12. Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12. По т. Пифагора для ΔCDH. CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12², CH = √(12²) = 12. Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°. По т. Пифагора для ΔACH: AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369, AH = √(1369) = 37. ответ. 37 дм.
2) Так как АD -биссектриса,то ∠ CAD=∠BAD= 49° Значит ∠A= 98° ∠B=180°-∠A-∠С=180°-98°-71°=10° В треугольнке ABD
∠ADB=180°-∠BAD-∠B=180°-49°-10°=121°
3)В треугольнике АВС АС=ВС, значит треугольник равнобедренный и углы при основании равны,∠ABС= ∠ВAС Так как ∠ ВАD= 35° и сумма острых углов прямоугольного треугольника равна 90 °, то ∠ АВD= 90°- 35°=55° ∠А=∠В=55° ∠С=180°-∠А-∠В=180°-55°-55°=70°
4) Сумма углов четырехугольника АЕОD равна 360° Два угла по 90° (угол Е и угол D) и один 75°( угол А) Значит ∠EOD=360°-90°-90°-75°=105°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Высота прямоугольного треугольника проведенная из вершины угла к гипотенузе равна 2 корень из 5 см найти гипотенузу если один из катетов равен 6 см
Высота из прямого угла разбивает треугольник на подобные.
ABC~ACH (прямоугольные с общим углом)
AB/AC =AC/AH
AH =√(AC^2 -CH^2) =√(36-20) =4 (см)
AB =AC^2/AH =36/4 =9 (см)