Четырёхугольник ABCD вписан в окружность, поэтому сумма противоположных углов равна 180°.
∠BAD+∠BCD = 180°;
∠BCA = 180°-∠BAD = 180°-120° = 60°
Вписанные углы опирающиеся на одну дугу равны.
∠CAD - вписанный и опирается на ∪CD
∠CBD - вписанный и опирается на ∪CD
∠CAD = ∠CBD
По теореме синусов в треугольнике CBD:По основному тригонометрическому тождеству (sin²α+cos²α=1):
Пусть BC=x, тогда 0<x<4.
Рассмотрим случай, когда cos(CBD) = 1/7
По теореме косинусов в треугольнике CBD:
x²-2x-15 = 0
D = (-2)²-4·1·(-15) = 4+60 = 8²
x₁ = (2+8)/2 = 10/2 = 5
x₂ = (2-8)/2 = -6/2 = -3
Ни один корень не подходит под условие 0<x<4.
Теперь случай, когда cos(CBD) = -1/7
По теореме косинусов в треугольнике CBD:
x²+2x-15 = 0
D = 2²-4·1·(-15) = 4+60 = 8²
x₃ = (-2+8)/2 = 6/2 = 3
x₄ = (-2-8)/2 = -10/2 = -5
0 < x₃ < 4
x = 3 удовлетворяет условию, значит cos(CBD) = -1/7.
cos(CBD) < 0, а sin(CBD) > 0. Поэтому ∠CBD - угол второй четверти, тогда ∠CBD = arccos(-1/7)
∠CAD = arccos(-1/7)
ответ: arccos(-1/7).
schumacher8
08.01.2023
Дана правильная треугольная пирамида со стороной основания а = 8 см, боковая грань наклонена к плоскости основания под углом α = 30°. Найти площадь полной поверхности пирамиды и объём.
Высота основания h = a√3/2 = 8√3/2 = 4√3. Проекция апофемы на основание равна h/3 = 4√3/3. Апофема А равна: А = (h/3)/cos α = (4√3/3)/(√3/2) = 8/3. Высота пирамиды Н = (h/3)*tg α = (4√3/3)*(1/√3) = 4/3. Периметр основания Р = 3а = 3*8 = 24. Площадь боковой поверхности Sбок равна: Sбок = (1/2)РА = (1/2)*24*(8/3) = 32 кв.ед. Площадь основания So = a²√3/4 = 8²√3/4 = 16√3 кв.ед. Полная площадь S = So + Sбок = 16√3 + 32 = 16(√3 + 2) кв.ед. Объём V = (1/3)SoH = (1/3)*(16√3)*(4/3) = (64√3/9) куб.ед.
Bella Sergei
08.01.2023
В основании прямоугольного параллелепипеда прямоугольник со сторонами 15 и 20. По теореме Пифагора найдем диагональ прямоугольника (х) x^2=15^2+20^2=225+400=625 x=25 Из условия задачи диагональ параллелепипеда образует с боковым ребром и диагональю основания равнобедренный прямоугольный треугольник, значит боковое ребро равно диагонали прямоугольника и равно 25 Объем параллелепипеда (V) равен произведению площади основания на боковое ребро Площадь основания равна произведению сторон, и равна 15*20=300 V=300*25=7500
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Четырехугольник abcd вписан в окружность.известно что bd=7, cd=8, bc< 4, угол bad=120 градусов.определить угол cad.
∠BAD+∠BCD = 180°;
∠BCA = 180°-∠BAD = 180°-120° = 60°
Вписанные углы опирающиеся на одну дугу равны.∠CAD - вписанный и опирается на ∪CD
∠CBD - вписанный и опирается на ∪CD
∠CAD = ∠CBD
По теореме синусов в треугольнике CBD:По основному тригонометрическому тождеству (sin²α+cos²α=1):Пусть BC=x, тогда 0<x<4.
Рассмотрим случай, когда cos(CBD) = 1/7По теореме косинусов в треугольнике CBD:
x²-2x-15 = 0
D = (-2)²-4·1·(-15) = 4+60 = 8²
x₁ = (2+8)/2 = 10/2 = 5
x₂ = (2-8)/2 = -6/2 = -3
Ни один корень не подходит под условие 0<x<4.
Теперь случай, когда cos(CBD) = -1/7По теореме косинусов в треугольнике CBD:
x²+2x-15 = 0
D = 2²-4·1·(-15) = 4+60 = 8²
x₃ = (-2+8)/2 = 6/2 = 3
x₄ = (-2-8)/2 = -10/2 = -5
0 < x₃ < 4
x = 3 удовлетворяет условию, значит cos(CBD) = -1/7.
cos(CBD) < 0, а sin(CBD) > 0. Поэтому ∠CBD - угол второй четверти, тогда ∠CBD = arccos(-1/7)
∠CAD = arccos(-1/7)
ответ: arccos(-1/7).