авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6
Поделитесь своими знаниями, ответьте на вопрос:
1 дан тупоугольный треугольник abc. точка пересечения d серединных перпендикуляров сторон тупого угла находится на расстоянии 35, 6 см от вершины угла b. определи расстояние точки d от вершин a и c. da= см. dc= см.
ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см