В правильной пирамиде SABC SO - высота пирамиды. СО - радиус описанной около основания окружности. СО=а√3/3=2√3·√3/3=2. СО - проекция ребра SO на плоскость основания. Опустим высоту МК на отрезок СО. В тр-ке SOC МК - средняя линия т.к. МК║SO и SM=MC, значит МК=SO/2. SO²=SC²-CO²=32-4=28. SO=2√7. MK=√7. Так как в тр-ке ВМК МК перпендикулярна плоскости основания, нужно найти угол МВК. В тр-ке BSC ВМ - медиана. Формула медианы: m²=(2b²+2c²-a²)/2, ВМ²=(2ВS²+2ВС²-SC²)/2=(SC²+2BC²)/2=(32+24)/2=28, ВМ=√28=2√7. В тр-ке ВМК sin(MBK)=МК/ВМ=(√7)/(2√7)=1/2. ∠MBK=30° - это ответ.
Bezzubova_Stepanov1355
01.09.2021
АВ=10 см, А1В1=6 см, ∠α=60°. О1К и ОМ - радиусы вписанных в основание окружностей так как боковые грани одинаково наклонены к плоскости основания. Радиус вписанной окружности для правильного тр-ка: r=a√3/6. О1К=А1В1·√3/6=√3 см. ОМ=АВ·√3/6=10√3/6=5√3/3 см. МН=ОМ-О1К=(5√3/3)-√3=2√3/3 см. В тр-ке KMH КМ=МН/cosα=4√3/3 см. Площадь полной поверхности: Sполн=S1+S2+Sбок, S1+S2 - cумма площадей оснований. S1+S2=АВ²√3/4+А1В1²√3/4=√3(АВ²+А1В1²)/4=√3(10²+6²)/4=34√3 см². S бок=3·(АВ+А1В1)·КМ/2=3(10+6)·4√3/6=32√3 см². Sполн=34√3+32√3=66√3 см² - это ответ.
вертикальные углы: 1и4 , 3и2, 5и7 , 6и8
Смежные углы:5и6, 8и7, 3и4, 1и2