построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
Поделитесь своими знаниями, ответьте на вопрос:
1) докажите, что если мн = 8 см, мк = 5 см, нк = 10 см, то точка м не лежит между точками н и к.
Опустим из С высоту на AD. Она пересечет AD в точке E. Из тре-ка CDE DE = CD cos D = 8 cos 60 = 4
Если AD = 20 то AE = BC = 20-4 = 16
CE = CD sin 60 = 8 √3/2 = 4√3
и так: R1 = 16 R2 = 20 L = 8 H = 4√4
V = 1/3 π · 4√3 · (16² + 16·20 + 20²) = 3904 π √3
S = π · (20² + (20 + 16) 8 + 16² ) = 944π
2. R = 4 Sсеч = 32√3 h = 2
S = 2 π R (H+ R)
V = π R² H
Площадь сечения - высота H умноженная на ширину сечения.
Ширина сечения (x) находится из треугольника образованного двумя радиусами и хордой на которые они опираются. Высота этого треугольника дана, h = 2.
x = 2 √(R²-h²) = 2√(16-4) = 4√3
Если Sсеч = 32√3 = H · x значит H = Sсеч / x = 32√3 / 4√3 = 8
S = 2 π R (H+ R) = 2π 4 ( 8 + 4) = 96π
V = π R² H = π 4² 8 = 128π