Объяснение:
1. Наклонная равна 16 см, т.е если рассматривать прямоугольный треугольник, что гипотенуза равна 16 см, один из острых углов (нижний угол) равен 30° => нужно найти нижний катет, т.е проекцию. Катет напротив угла в 30° равен половине гипотенузы:
Ah = AM/2 = 16/2 = 8 см - это высота, найдем второй катет: по теореме Пифагора:
Mh= √(16²-8²) = 8√3 - это и есть проекция. (если нужен будет рисунок, напиши в комментарии)
2)
а) угол между AB и CC1 =90°
б) угол между плоскостями ABC и A1DC = 45°
(если нужен рисунок, напиши в комментарии)
3) Мы видим, что нам дана прямоугольная трапеция, с высотой 4 см, большим основанием 12 см и меньшим 5см, нам нужно найти другую боковую сторону (наш OC). Рассмотрим прямоугольный треугольник OCH:
OH = 4; HC= 12-5= 7; нужно найти OC:
по теореме Пифагора:
OC= √(4²+7²) = √65
(если нужен будет рисунок, напиши в комментарии)
Удачи на экзаменах.
Поделитесь своими знаниями, ответьте на вопрос:
4номер. напишите полное решение. объясните абсолютно все. важно полное решение.
Находим боковую сторону трапеции.
с = √(9² + ((40-14)/2)²) =√(81+169) = √250 = 15.81139 см.
Радиус окружности, описанной около этой трапеции, равен радиусу окружности, описанной около треугольника АСД.
Находим АС - это диагональ трапеции и сторона треугольника АСД.
АС = √(9² + (14+((40-14)/2))²) = √(81 + 729) = √810 = 28.4605 см.
Синус угла А равен: sin A = 9/√810.
Тогда R = a/(2sin A) = √250/(2*(9/√810)) = √250*√810/(2*9) =
= √ 202500/18 = 450/18 = 25 см.
Ставь как лучший