Объяснение:
1 . ΔАВС - прямокутний , CD⊥AB , тому СD² = AD * BD ;
4² = ( 13 - 3 )* 3 - неправильна рівність . Отже , АВ = 13 -
неправильне дане .
3 . У ромбі ОА = 1/2 АС = 1/2 *8 = 4 ; ОВ = 1/2 BD =
= 1/2 *6 = 3 . ΔAOB - прямокутний ( у ромбі діагоналі
взаємно перпендикулярні ) , тому АВ = √( ОА² + ОВ²) =
= √ ( 4² + 3² ) = 5 ; АВ = х = 5 .
5 . АС = х - діагональ квадрата , тому х = а√2 .
8 . ΔАВС - прямокутний , CD⊥AB , тому СD² = AD * BD ;
CD = √( 24 * 54 ) = 6 * 2 * 3 = 36 .
Із прямок. ΔАCD за Т. Піфагора х = √( 36² + 24² ) =
= 12√( 3² + 2² ) = 12√13 ; х = 12√13 .
Із прямок. ΔВCD за Т. Піфагора у = √( 36² + 54² ) =
= 18√( 3² + 2² ) = 18√13 ; у = 18√13 .
Поделитесь своими знаниями, ответьте на вопрос:
Найти, на сколько квадрат диагонали прямоугольника со сторонами a=14 и b=19 больше его удвоенной площади.
x + 3y + 3 = 0
Объяснение:
Стороны:
5x - y - 1 = 0
x - y - 9 = 0
Точка пересечения высот: H(1; -2).
Уравнение высоты, перпендикулярной к прямой 5x - y - 1 = 0:
h1 : (x - 1) + 5(y + 2) = 0; x + 5y + 9 = 0
Вершина, из которой выходит эта высота, есть точка пересечения высоты и стороны x - y - 9 = 0:
{ x + 5y + 9 = 0
{ x - y - 9 = 0
Решаем подстановкой:
{ y = x - 9
{ x + 5(x-9) + 9 = 0
6x - 36 = 0; x = 6; y = -3. A(6; -3).
Уравнение высоты, перпендикулярной к прямой x - y - 9 = 0:
h2 : (x - 1) + (y + 2) = 0; x + y + 1 = 0
Точно также находим точку пересечения высоты и стороны 5x - y - 1 = 0:
{ x + y + 1 = 0
{ 5x - y - 1 = 0
Решаем тоже подстановкой:
{ y = 5x - 1
{ x + 5x - 1 + 1 = 0
6x = 0; x = 0; y = -1. B(0; -1)
Теперь строим уравнение прямой по двум точкам:
(AB) : (x-6)/(0-6) = (y+3)/(-1+3)
(x-6)/(-6) = (y+3)/2
2(x-6) = -6(y+3)
2x - 12 = -6y - 18
2x + 6y + 6 = 0
x + 3y + 3 = 0