Объяснение:
Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются.
а) докажите, что АВ параллельна СD.
б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых.
Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD.
Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости.
Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями)
Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны.
АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD.
б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм.
Противоположные углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°
Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°———
Поделитесь своими знаниями, ответьте на вопрос:
Решите решите в прямоугольном треугольнике из вершины угла, равному 60 градусов, проведена биссектриса. расстояние от основания биссектрисы вершины другого острого угла равно 14 см. найдите расстояние от основания биссектрисы до вершины прямого угла.
2. Откладываете на этой прямой отрезок АВ (замерив данный Вам катет циркулем), равный данному катету.
3. От точки А на этой же прямой откладываете отрезок АА1, равный данному катету, но в противоположную сторону.
4. Из точек А и В циркулем проводите дуги радиусом, БОЛЬШИМ АА1 и получаете точку пересечения этих дуг М.
5. Соединяете точки А и М прямой - это будет перпендикуляр к прямой в точку А, то есть перпендикуляр, содержащий второй катет.
6. Теперь от точки В строите данный Вам острый угол. Для этого на данном нам угле радиусом R проводим окружность и получаем точки Р и К. Этим же радиусом проводим окружность с центром в точке В на прямой "а". Получаем точку Р1. Замеряем циркулем расстояние РК на данном нам угле. Это радиус r. Из точки Р1 (как центр) на прямой "а" радиусом r проводим окружность и в точке пересечения двух окружностей получаем точку К1. Через точки В и К1 проводим прямую "b". Получили данный нам угол В.
7. Пересечение прямой b с перпендикуляром и даст Вам третью точку С искомого треугольника.
Получили искомый треугольник АВС.