Угол А = 180 - (60+90) = 30
СВ = 16:2=8 тк против угла равного 30 лежит катет равный половине гипотенузы
АВ^2 = АС^2 + СВ^2
АС^2 = АВ^2 - СВ^2
АС^2= 256 - 64 = 192
АС = 8 корней из 3
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Объяснение:
Обозначим треугольник АВС, С- прямой угол,
О- центр вписанной окружности, ихвестно, что цент вписанной в треугольник окружности лежит в точке пересечения биссектрис ( а , значит и набиссектрисе прямого угла)
СД- биссектриса, значит АД:ДВ=4х:3х
Опусти перпендикуляры из точки О на катеты - ОК на катет СВ и ОМ на катет АС они равны радиусу, те 7см.
тк угол С прямой, то ОК=МС=МО=СК=7см.
Вспомним, сто отезки касательных, проведенных из одной точки к окружности равны ( легко доказать) Т.е. КВ=ДВ=3х и АМ=АД =4х.
Получилось
АС=АМ+МС=4х+7
АВ=АД+ДВ=4х+3х=7х
СВ=СК+КВ=7+3х
Теперь составим уравнение применив теорему Пифагора
(4х+7)^{2}+(7+3х)^{2)=(7х)^{2}
решив его. найдем х потом умножим на 3 и на 4
Поделитесь своими знаниями, ответьте на вопрос:
В прямоугольном треугольнике угол С 90° угол В 60° гипотенуза 16 см. Найдите катет. Заранее
ответ смотри во вложении. ты не отметил(а) какой из углов равен 60,так что задача может быть неправильной. но это тоже один из решения.
Если другой угол равен 60,то ответ наоборот.