skyey
?>

В каком из четырех случаев использован параллельный перенос​

Геометрия

Ответы

iracaenko153

а) параллельный перенос

б) осевая симметрия

в) осевая симметрия

г) поворот

ответ: 1) а

mishanay301csfp
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.

Сечение правильной треугольной призмы проходящее через сторону основания и противо лежащую вершину д
Сечение правильной треугольной призмы проходящее через сторону основания и противо лежащую вершину д
Malenyuk
Построим MH ⊥ DC

Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник

NM = DH = 12 (в прямоугольнике противоположные стороны равны)

HC = DC - DH = 18 - 12 = 6

∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)

Рассмотрим ΔMHC и ΔBNM

∠H = ∠N = 90°

∠DCB = ∠NMB (соответственные при NM || DC  секущей BC)

==> ΔMHC ~ ΔBNM по двум углам

В подобных треугольниках соответственные стороны пропорциональны

\displaystyle\tt\frac{NM}{HC} =\frac{BM}{MC}\\\\\\\frac{12}{6}=\frac{BM}{8}\\\\\\2=\frac{BM}{8}\\\\BM = 2\cdot 8 = 16

Синус - отношение противолежащего катета к гипотенузе

\displaystyle\tt sinB=\frac{NM}{BM} \\\\\\sinB=\frac{12}{16} =\frac{3}{4}=0.75

ответ: sinB = 0,75.
Впрямоугольном треугольнике bcd из точки m, лежащей на гипотенузе bc, опущен перпендикуляр mn на кат

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В каком из четырех случаев использован параллельный перенос​
Ваше имя (никнейм)*
Email*
Комментарий*