Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
правильная треугольная пирамида SABC.
R - середина ребра ВС.
S - вершина.
АВ = 7
SR = 16
Найти:S поверхности - ?
V - ?
Решение:Правильный многоугольник - многоугольник, у которого все углы и стороны равны.
Правильная пирамида - пирамида, у которой основание - правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой.
=> в основании этой правильной треугольной пирамиды лежит равносторонний △АВС.
Рассмотрим △АВС:
АВ = ВС = АС = 7, так как △АВС - равносторонний.
P△АВС = АВ + ВС + АС = 7 + 7 + 7 = 21
Так как △АВС - равносторонний => он ещё и равнобедренный.
BR = RC = 3,5, так как AR - медиана. (Также R - середина ВС, по условию)
Найдём высоту AR в △АВС, по теореме Пифагора:
с² = а² + b²
a = √c² - b²
a = √(7² - 3,5²) = √(49 - (7/2)²) = √(49 - 49/4) = √147/4 = √(147)/2 = 7√(3)/2
Итак, AR = 7√(3)/2
S осн = S △ (в основании)
S осн = S △АВС = 1/2ВС * AR = 1/2 * 7 * 7√(3)/2 = 49√(3)/4 ед.кв.
SR - высота боковой грани, так как SR - апофема.
Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины.
S бок = 1/2Р * SR = 21/2 * 16 = 168 ед.кв.
S поверхности = S осн + S бок = 49√(3)/4 + 168 = 189,21762 ≈ 189 ед.кв.
Точка, на которую опущена высота SO, является серединой правильного треугольника (точка пересечения медиана).Эти медианы делятся в отношении 2:1, считая от вершины.
AR/3 - АО основания AR. (2/3)
=> AR/3 - OR основания AR (1/3)
=> OR = 1/3 * 7√(3)/2 = 7√(3)/6
Рассмотрим △SRO:
△ASO - прямоугольный, так как SO - высота.
Найдём высоту SO, по теореме Пифагора:
с² = а² + b²
a = √(c² - b²)
a = √(16² - (7√(3)/6)²) = √(256 - 49/12) = √(9069)/6
Итак SO = √(9069)/6
V = 1/3S осн * SO
V = 1/3 * 49√(3)/4 * √(9069)/6= 49√(3023)/24 ед.кб.
ответ: ≈ 189 ед.кв.; = 49√(3023)/24 ед.кб.Поделитесь своими знаниями, ответьте на вопрос:
В неравнобедренном остроугольном треугольнике ABC со сторонами a, b, c длины соответствующих медиан равны ma, mb, mc. Рассмотрим 7 величин: (b+c)/2, |b−c|/2, ma, 3(b+c)/2, a/2, mb+mc, (b+c)/2+a. Упорядочите их в порядке убывания. В качестве ответа введите в нужном порядке числа от 1 до 7 через пробел (например, «1 7 2 6 3 5 4»
7 4 6 1 3 5 2
Объяснение:
Могу только ответ