Получается правильная четырёхугольная пирамида со стороной основания a = 6√2 см и длиной боковых рёбер b = 10 см
Диагональ основания по т. Пифагора
d² = a² + a² = 2(6√2)² = 2*36*2 = 144
d = √144 = 12 см
Сечение пирамиды, проходящее через вершину и диагональ основания - равносторонний треугольник с основанием 12 см и боковой стороной 10 см
Разделим его пополам высотой из вершины к основанию.
Получим два прямоугольных треугольника, с одним катетом 12/2 = 6 см, гипотенузой 10 см, и высотой h. По Пифагору
h² + 6² = 10²
h² + 36 = 100
h² = 64
h = √64 = 8 см
Это и есть расстояние от вершины до плоскости квадрата
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ABC биссектриса угла B делит сторону AC на отрезки AM и MC Если AM/MC=3/5;AC=16смНайти BC если AB=8см
Пусть АВСД-равнобедренная трапеция. АС=10-диагональ, Угол САД=60.
Опустим из вершины С высоту СН к стороне АД. В прямоугольном треугольнике АСН угол АСН=180-угол СНА (=90, та как СН-высота)-угол САН(он же САД)=180-90-60=30. Против угла в 30 градусов лежит катет АН равный половине гипотенузы АС. АН=10/2=5. По теореме Пифагора найдем высоту СН=АС в квадрате-АН в квадрате все под корнем=10 в квадрате-5 в квадрате все под корнем=5 корней из 3. В равнобедренной трапеции высота (СН=5 корней из 3) равна полусумме оснований. А площадь равна произведению полусуммы оснований на высоту. S=5 корней из 3*5корней из 3=75