Сторона треугольника АВ = "а". Пусть точка О - точка пересечения биссектрис. Опустим перпендикуляр ОН на сторону АВ. Пусть в прямоугольном треугольнике АОН катет АН = х. Тогда в прямоугольном треугольнике ВОН катет ВН = (а-х). Выразим радиус r вписанной окружности (общий катет треугольников) через второй катет и угол, прилежащий к этому катету. r = x*tg(A/2) и r = (a-x)*tg(B/2). Приравняем оба выражения.
x*tg(A/2) = (a-x)*tg(B/2) => x = a*tg(B/2)/(tg(A/2)+tg(B/2)).
Тогда r = a*tg(B/2)*tg(A/2)/(tg(A/2)+tg(B/2)).
Найдем биссектрисы АО и ВО из треугольников АОН и ВОН:
АО = r/Sin(A/2) = a*tg(A/2)*tg(B/2)/(Sin(A/2)(tg(A/2)+tg(B/2))).
BO = r/Sin(B/2) = a*tg(A/2)*tg(B/2)/(Sin(B/2)(tg(A/2)+tg(B/2))).
proh-dorohova5244
03.06.2021
Т.к. центром окружности является начало координат а координаты одной из точен нам известны, то отрезок соединяющие К с центром координат будет радиусом. 1) Т.к. координата -3 это длина отрезка по оси ОХ, а -4 по оси ОУ, эти так сказать длины отрезков можно взять в качестве катетов прямоугольного треугольника с гипотенузой КО(К и начало координат). 2) Дальше по теореме Пифагора находим гипотенузу: ОК=√((-3)²+(-4)²) ОК=5 3) Т.к. Радиус это половина диаметра то: 4*2=8 ответ: Диаметр окружности равен 8 Слава СССР!
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан отрезок AB и острый угол DEF.Постройте треугольник XOY так чтобы OX=AB , OY=1/2 АВ, угол XOY=2 < DEF
Сторона треугольника АВ = "а". Пусть точка О - точка пересечения биссектрис. Опустим перпендикуляр ОН на сторону АВ. Пусть в прямоугольном треугольнике АОН катет АН = х. Тогда в прямоугольном треугольнике ВОН катет ВН = (а-х). Выразим радиус r вписанной окружности (общий катет треугольников) через второй катет и угол, прилежащий к этому катету. r = x*tg(A/2) и r = (a-x)*tg(B/2). Приравняем оба выражения.
x*tg(A/2) = (a-x)*tg(B/2) => x = a*tg(B/2)/(tg(A/2)+tg(B/2)).
Тогда r = a*tg(B/2)*tg(A/2)/(tg(A/2)+tg(B/2)).
Найдем биссектрисы АО и ВО из треугольников АОН и ВОН:
АО = r/Sin(A/2) = a*tg(A/2)*tg(B/2)/(Sin(A/2)(tg(A/2)+tg(B/2))).
BO = r/Sin(B/2) = a*tg(A/2)*tg(B/2)/(Sin(B/2)(tg(A/2)+tg(B/2))).