Обозначим треугольник АВС(смотри рисунок). Угол "альфа"=60, поскольку в четырёхугольнике НМСN сумма остальных углов равна 90+120+90=300. По теореме синусов находим радиус окружности описанной вокруг треугольника НMN. Поскольку точки M и N, принадлежащие прямоугольным треугольникам СМН и СNН лежат на одной окружности , то окружность описанная вокруг НМN будет также описанной окружностью вокруг треугольников СМН и СNН. У прямоугольных треугольников центр этой окружности лежит на середине гипотенузы, отсюда находим высоту НС. Затем площадь треугольника АВС. Потом, по теореме косинусов-найдём сумму квадратов неизвестных сторон. Добавим к ней произведение Х*У и найдём полупериметр. А дальше по известной формуле Радиус вписанной окружности треугольника АВС равен - 12 корней из3/((4 корня из3)+6).
Evsevia-a
03.12.2022
1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда:
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
2 Найдите первый член и разность арифметическойпрогрессии аn, если:as +a13=38 и ад+as=29
Обозначим треугольник АВС(смотри рисунок). Угол "альфа"=60, поскольку в четырёхугольнике НМСN сумма остальных углов равна 90+120+90=300. По теореме синусов находим радиус окружности описанной вокруг треугольника НMN. Поскольку точки M и N, принадлежащие прямоугольным треугольникам СМН и СNН лежат на одной окружности , то окружность описанная вокруг НМN будет также описанной окружностью вокруг треугольников СМН и СNН. У прямоугольных треугольников центр этой окружности лежит на середине гипотенузы, отсюда находим высоту НС. Затем площадь треугольника АВС. Потом, по теореме косинусов-найдём сумму квадратов неизвестных сторон. Добавим к ней произведение Х*У и найдём полупериметр. А дальше по известной формуле Радиус вписанной окружности треугольника АВС равен - 12 корней из3/((4 корня из3)+6).