shuxratmaxmedov
?>

Отношение двух внутренних углов треугольника равно 1:2, а внешнихпри тех же вершинах 13:11. Найдите величину третьего внешнего угла очень

Геометрия

Ответы

TrubnikovKlimenok926

искомое сечение -  симметричный четырехугольник  BPKL

диагонали  PL , BK  пересекаются под углом 90 град

по условию

стороны основания  AB=BC=CD=AD =3

боковые ребра  MA=MB=MC=MD =8

точка К - середина ребра MD ;  KD = MD /2 = 8/2=4

ABCD -квадрат

диагональ  AC = BD =  3√2

пересечение диагоналей  точка  F  :  BF =FD = BD/2 =3√2 /2 =1.5√2

BK - медиана треугольника  MBD

длина медианы  BK = 1/2 √(2 BM^2 +2 BD^2  - MD^2 ) =1/2 √(2*8^2 +2*(3√2)^2  - 8^2 ) =5

по теореме косинусов

cos KBD = ( KD^2 - (BK^2+BD^2) )/ (-2*BK*BD)= ( 4^2 - (5^2+(3√2)^2) )/ (-2*5*3√2)= 9/(10√2)

MF - высота

треугольник  EBF - прямоугольный

BE = BF / cos KBD = 1.5√2 / [ 9/(10√2)] = 10/3

по теореме Пифагора EF =√(BE^2 - BF^2) =√( (10/3)^2 - (1.5√2)^2) =√238/6

MF - высота

треугольник  MFB - прямоугольный

по теореме Пифагора MF =√( MB^2 -BF^2) =√( 8^2- (1.5√2)^2 ) =√238/2

ME =MF -EF =√238/2- √238/6= √238/3

треугольники  MPL  ~ MCA    подобные

PL / AC = ME /MF ; PL = AC * ME /MF = 3√2 * √238/3 /√238/2 =2√2

площадь   сечения(четырехугольника  BPKL)     

Sс = PL*BK *sin<BEP /2 = 2√2*5*sin90 /2 = 5√2         

ответ  5√2

kot271104

Прямые O1B II O2C.

Это можно показать кучей сопособов, например тем, что дуги АВ малой окружности и АС большой соответствуют углу между общей касательной  в точке А и секущей ВС, а углы CO2A и AO1B - центральные углы этих дуг, то есть они равны, откуда O1B II O2C. 

Можно просто рассмотреть два равнобедренных треугольника ABO1 и ACO2, у которых углы при основании равны, и равны, по условию, 45/2 градусов, между прочим.

Поэтому нужно найти расстояние от О2 до прямой BO1, при том, что угол наклона О2О1 к ВО1 - это внешний угол при вершине равнобедренного треугольника AO1B, равный 45 градусам.

То есть высота треугольника BO1A равна H = (2 + 10)*√2/2 = 6√2, а площадь 

S = H*BO1/2 = (6√2)*2/2 = 6√2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Отношение двух внутренних углов треугольника равно 1:2, а внешнихпри тех же вершинах 13:11. Найдите величину третьего внешнего угла очень
Ваше имя (никнейм)*
Email*
Комментарий*