Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
olg14855767
20.01.2023
Пусть высота проведенная из прямого угла А (треугольника АBC) будет обозначена АК. Тогда ВК является проекцией стороны АВ на гипотенузу ВС, а КС -проекцией АС на гипотенузу. Согласно формулам : АВ=√ВК*ВС и АС=√КС*ВС. Мы знаем соотношение катетов АВ и АС = 6:5, значит надо составить пропорцию АВ/АС=√ВК*ВС/√КС*ВС, ВС сокращается и получаем , что ВК/КС=(АВ/АС)^2=36/25 Зная ,что ВК больше КС на 11см, получаем ВК=КС+11, подставим в предыдущую формулу, получим (КС+11)/КС=36/25 25(КС+11)=36КС 25КС+275=36КС 11КС=275 КС=25см ВК=25+11=36см, значит гипотенуза ВС=ВК+КС=25+36=61см Отве: 61см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ADC и АВС, изображенных на рисунке, АD=АВ и угол 1=углу2. Найдите углы ADC и АСВ, если угол АВС=108градусов, АСВ=32градусов
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.