Для ответа на этот вопрос нужно помнить Основное правило треугольника:
Сумма длин двух сторон должна быть больше длины третьей стороны
НУ и т.к. треугольник равнобедренный, то третья сторона равна или 6 или 12
т.к. у нас две стороны 6 и 12, значит третья сторона = 12
12+12>6
6+12>12
Если предположить что третья сторона =6
то 6+6=12, значит нарушено основное правило треугольника
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
Поделитесь своими знаниями, ответьте на вопрос:
только 12 и 6, мне надо умоляю
В равнобедренном треугольнике две боковые стороны равны.
Если заданы две стороны равнобедренного треугольника 12 и 6, и нет пояснения, какая из сторон боковая, а какая сторона - основание, то возможны 2 варианта .
Если неизвестная сторона -боковая, то она может быть равна 6 . Тогда в треугольнике стороны равны 6, 6, 12 .
Но для таких длин сторон треугольника не выполняется неравенство треугольника: сумма двух сторон треугольника больше длины третьей стороны; 6+6=12, но (6+6) не больше 12. Не существует треугольника со сторонами 6, 6, 12.
Если неизвестная сторона -боковая, то она может быть равна 12 . Тогда в треугольнике стороны равны 12, 12, 6 .
Неравенство треугольника выполняется: 12+12>6 , 12+6>12.
Аналогично, если неизвестная сторона - основание, то оно может быть равна или 6, или 12. Тогда две боковые стороны равны в первом случае по 12, а во втором случае по 6 . То есть опять получаем два треугольника, один со сторонами 6, 12, 12 , а второй со сторонами 12, 6, 6 , который не существует .
ответ: сторона равнобедренного треугольника может быть равна 12 .