zakaz
?>

Определите вид треугольника, если его углы равны 75, 75 и 30 градусов

Геометрия

Ответы

platan3698952

Остроугольный

Объяснение:

miyulcha8077
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 
Akolomaeva4
Найлем  для начало   стороны AB=√(8-4)^2+(2-6)^2  =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это   трапеция выходит,  можно раздлить эту трапецию на два треугольника   затем найти площадь каждой    и суммировать Площадь треугольника S=ab/2*sinaнайдем угол   между  АВ  и AD   через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь  sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720     * √2720/2 =  26  теперь площадь другого треугольника  опять угол   B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640  =√1540/2   = √385 S=√385+26   площадь искомая

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определите вид треугольника, если его углы равны 75, 75 и 30 градусов
Ваше имя (никнейм)*
Email*
Комментарий*