Общепринято мнение, что египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид.
Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.
Судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.
lsuvorova1987
11.02.2022
Теорема Фалеса: Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. Как выполнять построение, у Вас подробно указано в задаче. Нет смысла повторять последовательность выполняемых действий. Главное- от одной точки отрезка (точки а) начертить полупрямую (луч АС) наклонно к данному отрезку. От этой точки А отметить на нем нужное количество точек (в данном случае 11) на равном расстоянии друг от друга, соединить последнюю точку (С) со вторым концом отрезка . Через каждую точку провести прямые параллельно СВ. Отрезок АВ будет разделен на 11 равных частей Готовый чертеж будет выглядеть так, как на рисунке, данном в приложении.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
От точки А к прямой l проведено Перпендикуляр Длинной 6 см и наклонную 7см.найдите длинну проекции Наклонной на прямую
Общепринято мнение, что египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид.
Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.
Судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.