Поделитесь своими знаниями, ответьте на вопрос:
Варіант 1 І рівень Виберіть правильну відповідь. 1. Враховуючи, що косинус гострого кута в прямокутному трикутнику дорівнює відношенню прилеглого катета до гіпотенузи, і користуючись рисунком, виберіть значення для косинуса кута А: а) ; б) ; в) ; г) . 2. Враховуючи, що синус гострого кута в прямокутному трикутнику дорівнює відношенню протилежного катета до гіпотенузи, і користуючись рисунком, виберіть значення для синуса кута В: а) ; б) ; в) ; г) . 3. Враховуючи, що тангенс гострого кута в прямокутному трикутнику дорівнює відношенню протилежного катета до прилеглого, і користуючись рисунком, виберіть значення для тангенса кута С: а) ; б) ; в) ; г) . Рисунки к заданиям прекреплены по порядку.
AB² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMB (1) ;
Из ΔAMC :
AC² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMC ;
но cos∠AMC =cos(180° -∠AMB) = - cos∠AMB поэтому
AC² =AM² +(BC/2)² +2AM*(BC/2)cos∠AMB (2) ;
суммируем (1) и (2) получаем
AB² +AC² =2AM² + BC²/2 ⇔4AM² =2AB² +2AC² -BC² ;
но BC² =AB² +AC²- 2AB *AC*cosA поэтому :
4AM² =AB² +AC² + 2AB *AC*cosA.
* * *
Можно продолжать медиана MD =AM и M соединить с вершинами
B и C. Получится параллелограмм ABDC , где верно
2(AB²+AC²) = AD² +BC² ⇔2(AB²+AC²) = 4AM² +BC².
Для медианы CN : 4CN² =CB² +CA² +2CB*CA*cosC. Если ΔABC равнобедренный CB =AB ⇒∠C =∠A , то 4CN² =4AM² или CN =AM .