формулировка этой гипотезы выглядит так: «на любом невырожденном проективном комплексном многообразии любой класс ходжа представляет собой рациональную линейную комбинацию классов циклов». нужно доказать или опровергнуть это утверждение. о чем речь? решения уравнения у = зх + 1 можно представить на координатной сетке как прямую. корни квадратного уравнения дадут нам параболу. усложнять можно бесконечно — например, поверхности с таким уравнением
навье стокса-описывают, как потоки жидкости или газа ведут себя при определенных условиях. их применяют в метеорологии, в конструировании самолетов, при расчете аэродинамики автомобилей. однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях. часть уравнений навье-стокса для несжимаемой жидкости « тысячелетия» не требует найти явные решения уравнения. вопрос такой: если известно состояние жидкости в определенный момент времени и характеристики ее движения — существует ли решение, которое будет верно для всего будущего времени? чтобы получить премию, достаточно доказать или опровергнуть существование и гладкость решения в любом из двух вариантов, предложенных институтом клэя.
многогранник джонсона — один из строго выпуклых многогранников, имеющих правильные грани, но не являющийся однородным[en] (то есть он не является правильным многогранником, архимедовым телом, призмой или антипризмой). многогранники названы именем нормана джонсона[en], который первым перечислил эти многогранники в 1966 году[1].
многогранник является одним из элементарных правильногранных многогранников, не получающихся манипуляций «отрежь и приклей» с правильными и архимедовыми телами, и хотя тело родственно икосаэдру, оно имеет четырёхкратную симметрию, а не трёхкратную.
тело можно получить соединением двух куполов, повёрнутых относительно друг друга.
Поделитесь своими знаниями, ответьте на вопрос:
Проведены касательные окружности , и , точки касания , и . = 38, 1 см. Определи периметр треугольника . ответ: = см
38,1*3=114,3 (т.к. все стороны равны между собой)