1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
ekattatarenko
25.02.2020
Проводим через линию пересечения оси сечения и оси верхнего основания (далее - хорда) радиус цилиндра, он образует с хордой прямой угол далее к концам хорды проводим ещё 2 радиуса. получаем равнобедренный треугольник с высотой 2 (по условию) рассмотрим один из полученных прямоугольных треугольников (половина равнобедренного) угол у основания равен 75 градусам, второй равен 15 градусам используя вывод из теоремы синусов мы имеет, что основание прямоугольного треугольника, равное половине хорды, есть не что иное, как произведение известного катета (2) на тангенс прилежащего угла в 15 градусов. Значение почти табличное)) умножаем результат на 2, получаем хорду. поскольку сечение параллельно высоте цилиндра, то перпендикуляр в плоскости сечения от верхнего основания цилиндра до нижнего равен 10. произведение хорды и, грубо говоря, высоты цилиндра - искомая площадь сечения
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Круговий сектор відповідає центральному куту 60°.Знайдіть площу зафарбованого сектора, якщо радіус круга дорівнює 6см
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение: