Вариант решения. Сделаем и рассмотрим рисунок а) Площади треугольников АМН и АСН равны - оба треугольника состоят из суммы равновеликих по условию треугольников АОМ и СОN и одного и того же треугольника АОN. Поскольку они имеют общее основание АN, их высоты МT и СК равны и параллельны ( обе перпендикулярны АN). Следовательно, четырехугольник МСКТ - параллелограмм ( прямоугольник) и МС|| АN.
б) Рассмотрим треугольники, на которые трапеция поделена отрезками МN, MC и AN Так как ВС || MN || AD, и МС || AN, то в трапеции АВСD образовались подобные по трем углам треугольники: △ ВМС ~△МNA ⇒ BC:MN=MC:AN (1) △ MCN~△ AND ⇒ MN:AD= MC:AN (2) из чего следует, что отношения в равенстве 1 и равенстве 2 равны, и BC:MN=MN:AD MN²=BC*AD=ab MN=√ab
спец387
23.05.2023
:) Что-то вроде шутки:) но если разберетесь - будет весьма полезно :) Пусть MA/AB = t; Ясно, что параметр t, соответствующий положению MN, находится в пределах 0 < t < 1; Я буду считать его переменным, и даже выходящим за предел 1. в силу параллельности MN II AD II BC, CN/CD = 1 - t; Площади треугольников AMO = S1 и CNO = S2; можно записать так при любом значении t S1 = k1*t^2; S2 = k2*(1 - t)^2; проще всего это понять, если вспомнить известную формулу S1 = AO*AM*sin(Ф1)/2 и учесть, что AM/AB = AO/AC; Ф1 = ∠BAC; для S2 - аналогично. При t = 0 S2 = a*H/2; откуда S2 = (a*H/2)*(1 - t)^2; при t = 1 S1 = b*H/2; S1 = (b*H/2)*t^2; Условие S1 = S2 дает a*(1 - t)^2 = b*t^2; это квадратное уравнение, которое легко решить, и учитывая t < 1; получается t = √a/(√a + √b); чтобы в дальнейшем не путаться, я обозначу найденное значение параметра t, соответствующее условию задачи, как t0; пункт б) уже решился - ясно, что MN = b*t0 + a*(1 - t0) = √(ab); а вот с пунктом a) придется повозиться. Для начала я продолжу боковые стороны трапеции до пересечения в точке E. Если при этом еще и продлить возможные значения параметра t за 1, то легко найти, что точке E сторон соответствует t1 = a/(a - b); увидеть это легче всего, если провести прямую через B II CD; параллельность AN и CM будет доказана, если EM/AM = EC/CN; если выразить эти отношения через параметры t0 и t1, получится (я думаю автор самостоятельно это сделает, хотя что тут делать... :)) (t1 - t0)/t0 = (t1 - 1)/(1 - t0); Если подставить сюда найденные значения t1 = a/(a - b); t0 = √a/(√a + √b); легко найти что и правая и левая части равны √b/(√a - √b); То есть равенство действительно выполнено, что завершает доказательство AN II CM;
Сделаем и рассмотрим рисунок
а) Площади треугольников АМН и АСН равны - оба треугольника состоят из суммы равновеликих по условию треугольников АОМ и СОN и одного и того же треугольника АОN.
Поскольку они имеют общее основание АN, их высоты МT и СК равны и параллельны ( обе перпендикулярны АN).
Следовательно, четырехугольник МСКТ - параллелограмм ( прямоугольник) и МС|| АN.
б) Рассмотрим треугольники, на которые трапеция поделена отрезками МN, MC и AN
Так как ВС || MN || AD, и МС || AN, то в трапеции АВСD образовались подобные по трем углам треугольники:
△ ВМС ~△МNA ⇒
BC:MN=MC:AN (1)
△ MCN~△ AND ⇒
MN:AD= MC:AN (2) из чего следует, что отношения в равенстве 1 и равенстве 2 равны, и
BC:MN=MN:AD
MN²=BC*AD=ab
MN=√ab