Rjkjneirbyf555
?>

Объем шара радиуса R обозначен буквой V, а площадь поверхности S. Найдите R и V, если S = 64 π см2.​

Геометрия

Ответы

Vladimir-Tamara1359

подобие

Sтрапеции = 1/2(AD + BC)h, где h - высота трапеции.

Пусть a1 = BC (меньшее основание), a2 = AD (большее основание), h1 - высота треугольника BOC, h2 - высота треугольника AOD (обе высоты проведены на из точки О).

Тогда Sтрапеции = 1/2(a1 + a2)(h1 + h2).

 

Угол CAD = углу BCA(как накрест лежащие углы при параллельных прямых BC и AD и секущей AC),

Угол DBC = углу ADC(как накрест лежащие углы при параллельных прямых BC и AD и секущей BD),

значит, ΔBOC подобен ΔDOA (по двум углам).

 

По теореме о соотношении площадей подобных треугольников

SΔAOD/SΔBOC = k^2 (k - коэффициент подобия).

SΔAOD/SΔBOC = 8/2 = 4 => k = 2.

 

Значит, a2/a1 = h2/h1 = 2.

h2 = 2h1, a2 = 2a1 => Sтрапеции = 1/2 * 3a1 * 3h1 = 3a1*h1.

SΔBOC = 1/2*a1*h1 = 2 => a1*h1 = 4.

Итак, Sтрапеции = 3*4 = 12.

alfaduk24908

Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".

Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.

По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.

Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.

Высота С1Н из прямого угла по ее свойству равна:

С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.

Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.

α = arcsin0,2823 ≈ 16,4°.


Впрямоугольном параллелепипеде abcda1b1c1d1 найдите угол между плоскостью a1bc и прямой bc1, если aa

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Объем шара радиуса R обозначен буквой V, а площадь поверхности S. Найдите R и V, если S = 64 π см2.​
Ваше имя (никнейм)*
Email*
Комментарий*