В основаниии прямоугольного паралелепипеда лежит прямоугольник.Диагональ делит прямоугольник на два прямоугольных треугольника и диагональ является гипотенузой треугольника, по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) на ходим гипотенузу: гипотенуза^2 = 2^2 + 3^2
гипотенуза = square 13
теперь представляем диагональ в прямоугольном параллелепипеде - это получается прямоугольный треугольник. Один катет в этом треугольнике одновременно является гипотенузой из предыдущего пункта решения, равен он square 13, диагональ параллелепипеда является гипотенузой треугольника, а второй катет надо найти по теореме пифагора:square38^2 = (square 13)^2 + катет^2
катет =5
Площадь поверхности состоит из двух площадей оснований и 4 площадей боковых поверхностей.
Площадь основания = 2*3 = 6
Площадь одной боковой поверхности = 2*5 = 10
Площадь второй боковой поверхности = 3*5 = 15
Общая площадь = 2(5+12+18)=70
ответ:70 см^2
Поделитесь своими знаниями, ответьте на вопрос:
У многокутнику п'ять кутів дорівнюють по 138 градусів , а решта - по 150 градусів . Скільки діагоналей можна провести в цьому многокутнику ?
Дано: ABCA₁B₁C₁ - прямая призма с равными рёбрами. F∈A₁C₁; A₁F = FC₁
BC₁∩CB₁ = O
Найти: FO.
Боковые грани призмы это квадраты т.к. рёбра равны и призма прямая.
Пусть M∈B₁C₁ и OM⊥B₁C₁ тогда OM - медиана (т.к. ΔB₁O₁C₁ - равнобедренный), то есть B₁M = MC₁ значит FM - средняя линия ΔA₁C₁B₁.
FM = A₁B₁:2 = 4:2 см = 2см - как средняя линия.
MO = MB₁ - как катет в прямоугольном Δ с острым углом в 45° (ΔB₁OM).
MO = B₁C₁:2 = 4:2 см = 2см.
FM ⊥ MO т.к. призма прямая, то есть линейный угол, двугранного угла между основаниями и боковыми гранями, будет 90°.
По теореме Пифагора в прямоугольном ΔFMO:
ответ: 2√2 см.