В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
По условию, МСН = 13°.
1) Сумма острых углов СМН, МСН прямоугольного треугольника НСМ равна 90o. Значит, СМН = 90o - МСН = 90o - 13o = 77o
2) Треугольник АМС равнобедренный, т.к. СМ равна половине гипотенузы по свойству из п.3 "Что необходимо знать для решения", а АМ равна половине гипотенузы, т.к. СМ - медиана. Отсюда следствие: угол А равен углу АСМ по свойству углов при основании равнобедренного треугольника.
3) Угол СМН внешний по отношению к треугольнику АМС. Он равен сумме двух внутренних А и АСМ, с ним не смежных. Но А = АСМ как углы при основании равнобедренного треугольника. Следовательно, А = АСМ = 77o : 2 = 38,5o
4) Один острый угол А треугольника АВС мы нашли. Теперь найдем второй. Сумма острых углов А, В прямоугольного треугольника АВС равна 90o. Значит, В = 90o - А = 90o - 38,5o = 51,5o
Больший угол равен 51,5o.
ответ: 51,5°
Поделитесь своими знаниями, ответьте на вопрос:
По данным рисунка найдите углы 1 и 2 если a||b и угол 1 ч четыре раза больше угла 2.
Углы 1 и 2 односторонние.
Пусть угол 2 равен x, тогда угол 1 равен 4x.
По свойству односторонних углов (их сумма равна 180°) составим и решим уравнение:
x + 4x = 180°
5x = 180°
x = 36°
Следовательно, угол 2 равен 36°, а угол 1 - 36° × 4 = 144°