обозначим проекции точек а; в; с; d и точки о - точки пересечения диагоналей :
a_(1); b_(1); c_(1); d_(1); o_(1)
рассмотрим прямоугольные трапеции aa_(1)d_(1)d и вв_(1)с_(1)с
пересекаются по прямой оо_(1)
оо_(1)- средняя линия трапеции aa_(1)d_(1)d
оо_(1)- средняя линия трапеции вв_(1)с_(1)с
так как средняя линия трапеции равна полусумме оснований, то
из трапеции aa_(1)d_(1)d:
оо_(1)=(аа_(1)+dd_(1))/2
из трапеции вв_(1)с_(1)с :
оо_(1)=(bb_(1)+cc_(1))/2
приравниваем правые части:
(аа_(1)+dd_(1))/2=(bb_(1)+cc_(1))/2 ⇒ [b]аа_(1)+dd_(1)=bb_(1)+cc_(1)[/b]
Поделитесь своими знаниями, ответьте на вопрос:
Пол комнаты, который имеет форму прямоугольника со сторонами 10, 5 м и 2, 9 м, необходимо покрыть паркетом прямоугольной формы. Длина дощечки паркета равна 25 см, а ширина — 5 см. Сколько потребуется таких дощечек для покрытия всего пола?
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500
25x^2=2500
x^2=100
x=-+10
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
ac=a^2\c
a - катет
с - гипотенуза
a с индексом с - отрезок.
ac=900\50=18
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
ответ: 18 и 32 мм