Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
milanmilan8672
12.04.2023
Сечение конуса - ΔАВС с основанием АС=6√3 - хорда. равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3. tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α MO_|_(MABCD), МО - высота пирамиды. прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA MO=d*tgα/2
Vпир=(1/3)*Sосн*H Sосн=a², a- сторона основания пирамиды диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС² АВ=АС=а d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2 S=(d/√2)²=d²/2 Vпир=(1/3)*(d²/2)*(d*tgα/2) Vпир=(d³ *tgα)/12